current location:home > family > text

“I haven’t seen her this two hours,” says Tom, commencing

description[9]ThefollowingextractfromWalkeronPatents(4thedition)willprobablybeofinteresttothereader:"Sec.31a.Am ...

[9] The following extract from Walker on Patents (4th edition) will probably be of interest to the reader:

“I haven’t seen her this two hours,” says Tom, commencing

"Sec. 31a. A meritorious exception, to the rule of the last section, is involved in the adjudicated validity of the Edison incandescent-light patent. The carbon filament, which constitutes the only new part of the combination of the second claim of that patent, differs from the earlier carbon burners of Sawyer and Man, only in having a diameter of one-sixty-fourth of an inch or less, whereas the burners of Sawyer and Man had a diameter of one-thirty-second of an inch or more. But that reduction of one-half in diameter increased the resistance of the burner FOURFOLD, and reduced its radiating surface TWOFOLD, and thus increased eightfold, its ratio of resistance to radiating surface. That eightfold increase of proportion enabled the resistance of the conductor of electricity from the generator to the burner to be increased eightfold, without any increase of percentage of loss of energy in that conductor, or decrease of percentage of development of heat in the burner; and thus enabled the area of the cross-section of that conductor to be reduced eightfold, and thus to be made with one-eighth of the amount of copper or other metal, which would be required if the reduction of diameter of the burner from one-thirty-second to one-sixty- fourth of an inch had not been made. And that great reduction in the size and cost of conductors, involved also a great difference in the composition of the electric energy employed in the system; that difference consisting in generating the necessary amount of electrical energy with comparatively high electromotive force, and comparatively low current, instead of contrariwise. For this reason, the use of carbon filaments, one-sixty-fourth of an inch in diameter or less, instead of carbon burners one-thirty-second of an inch in diameter or more, not only worked an enormous economy in conductors, but also necessitated a great change in generators, and did both according to a philosophy, which Edison was the first to know, and which is stated in this paragraph in its simplest form and aspect, and which lies at the foundation of the incandescent electric lighting of the world."

“I haven’t seen her this two hours,” says Tom, commencing

No sooner had the truth of this new principle been established than the work to establish it firmly and commercially was carried on more assiduously than ever. The next immediate step was a further investigation of the possibilities of improving the quality of the carbon filament. Edison had previously made a vast number of experiments with carbonized paper for various electrical purposes, with such good results that he once more turned to it and now made fine filament-like loops of this material which were put into other lamps. These proved even more successful (commercially considered) than the carbonized thread--so much so that after a number of such lamps had been made and put through severe tests, the manufacture of lamps from these paper carbons was begun and carried on continuously. This necessitated first the devising and making of a large number of special tools for cutting the carbon filaments and for making and putting together the various parts of the lamps. Meantime, great excitement had been caused in this country and in Europe by the announcement of Edison's success. In the Old World, scientists generally still declared the impossibility of subdividing the electric-light current, and in the public press Mr. Edison was denounced as a dreamer. Other names of a less complimentary nature were applied to him, even though his lamp were actually in use, and the principle of commercial incandescent lighting had been established.

“I haven’t seen her this two hours,” says Tom, commencing

Between October 21, 1879, and December 21, 1879, some hundreds of these paper-carbon lamps had been made and put into actual use, not only in the laboratory, but in the streets and several residences at Menlo Park, New Jersey, causing great excitement and bringing many visitors from far and near. On the latter date a full-page article appeared in the New York Herald which so intensified the excited feeling that Mr. Edison deemed it advisable to make a public exhibition. On New Year's Eve, 1879, special trains were run to Menlo Park by the Pennsylvania Railroad, and over three thousand persons took advantage of the opportunity to go out there and witness this demonstration for themselves. In this great crowd were many public officials and men of prominence in all walks of life, who were enthusiastic in their praises.

In the mean time, the mind that conceived and made practical this invention could not rest content with anything less than perfection, so far as it could be realized. Edison was not satisfied with paper carbons. They were not fully up to the ideal that he had in mind. What he sought was a perfectly uniform and homogeneous carbon, one like the "One- Hoss Shay," that had no weak spots to break down at inopportune times. He began to carbonize everything in nature that he could lay hands on. In his laboratory note-books are innumerable jottings of the things that were carbonized and tried, such as tissue- paper, soft paper, all kinds of cardboards, drawing- paper of all grades, paper saturated with tar, all kinds of threads, fish-line, threads rubbed with tarred lampblack, fine threads plaited together in strands, cotton soaked in boiling tar, lamp-wick, twine, tar and lampblack mixed with a proportion of lime, vulcanized fibre, celluloid, boxwood, cocoanut hair and shell, spruce, hickory, baywood, cedar and maple shavings, rosewood, punk, cork, bagging, flax, and a host of other things. He also extended his searches far into the realms of nature in the line of grasses, plants, canes, and similar products, and in these experiments at that time and later he carbonized, made into lamps, and tested no fewer than six thousand different species of vegetable growths.

The reasons for such prodigious research are not apparent on the face of the subject, nor is this the occasion to enter into an explanation, as that alone would be sufficient to fill a fair-sized book. Suffice it to say that Edison's omnivorous reading, keen observation, power of assimilating facts and natural phenomena, and skill in applying the knowledge thus attained to whatever was in hand, now came into full play in determining that the results he desired could only be obtained in certain directions.

At this time he was investigating everything with a microscope, and one day in the early part of 1880 he noticed upon a table in the laboratory an ordinary palm-leaf fan. He picked it up and, looking it over, observed that it had a binding rim made of bamboo, cut from the outer edge of the cane; a very long strip. He examined this, and then gave it to one of his assistants, telling him to cut it up and get out of it all the filaments he could, carbonize them, put them into lamps, and try them. The results of this trial were exceedingly successful, far better than with anything else thus far used; indeed, so much so, that after further experiments and microscopic examinations Edison was convinced that he was now on the right track for making a thoroughly stable, commercial lamp; and shortly afterward he sent a man to Japan to procure further supplies of bamboo. The fascinating story of the bamboo hunt will be told later; but even this bamboo lamp was only one item of a complete system to be devised--a system that has since completely revolutionized the art of interior illumination.

Reference has been made in this chapter to the preliminary study that Edison brought to bear on the development of the gas art and industry. This study was so exhaustive that one can only compare it to the careful investigation made in advance by any competent war staff of the elements of strength and weakness, on both sides, in a possible campaign. A popular idea of Edison that dies hard, pictures a breezy, slap-dash, energetic inventor arriving at new results by luck and intuition, making boastful assertions and then winning out by mere chance. The native simplicity of the man, the absence of pose and ceremony, do much to strengthen this notion; but the real truth is that while gifted with unusual imagination, Edison's march to the goal of a new invention is positively humdrum and monotonous in its steady progress. No one ever saw Edison in a hurry; no one ever saw him lazy; and that which he did with slow, careful scrutiny six months ago, he will be doing with just as much calm deliberation of research six months hence--and six years hence if necessary. If, for instance, he were asked to find the most perfect pebble on the Atlantic shore of New Jersey, instead of hunting here, there, and everywhere for the desired object, we would no doubt find him patiently screening the entire beach, sifting out the most perfect stones and eventually, by gradual exclusion, reaching the long-sought-for pebble; and the mere fact that in this search years might be taken, would not lessen his enthusiasm to the slightest extent.