current location:home > world > text

father told him. No, she would never go down if Tom didn’t

  • father told him. No, she would never go down if Tom didn’t
  • world
  • 2023-12-03 13:30:47
  • 7737

descriptionTheselampsandmanyothersofsimilarcharacter,ingeniousastheywere,failedtobecomeofanycommercialvalue,due ...

These lamps and many others of similar character, ingenious as they were, failed to become of any commercial value, due, among other things, to the brief life of the carbon burner. Even under the best conditions it was found that the carbon members were subject to a rapid disintegration or evaporation, which experimenters assumed was due to the disrupting action of the electric current; and hence the conclusion that carbon contained in itself the elements of its own destruction, and was not a suitable material for the burner of an incandescent lamp. On the other hand, platinum, although found to be the best of all materials for the purpose, aside from its great expense, and not combining with oxygen at high temperatures as does carbon, required to be brought so near the melting-point in order to give light, that a very slight increase in the temperature resulted in its destruction. It was assumed that the difficulty lay in the material of the burner itself, and not in its environment.

father told him. No, she would never go down if Tom didn’t

It was not realized up to such a comparatively recent date as 1879 that the solution of the great problem of subdivision of the electric current would not, however, be found merely in the production of a durable incandescent electric lamp--even if any of the lamps above referred to had fulfilled that requirement. The other principal features necessary to subdivide the electric current successfully were: the burning of an indefinite number of lights on the same circuit; each light to give a useful and economical degree of illumination; and each light to be independent of all the others in regard to its operation and extinguishment.

father told him. No, she would never go down if Tom didn’t

The opinions of scientific men of the period on the subject are well represented by the two following extracts--the first, from a lecture at the Royal United Service Institution, about February, 1879, by Mr. (Sir) W. H. Preece, one of the most eminent electricians in England, who, after discussing the question mathematically, said: "Hence the sub-division of the light is an absolute ignis fatuus." The other extract is from a book written by Paget Higgs, LL.D., D.Sc., published in London in 1879, in which he says: "Much nonsense has been talked in relation to this subject. Some inventors have claimed the power to `indefinitely divide' the electric current, not knowing or forgetting that such a statement is incompatible with the well-proven law of conservation of energy."

father told him. No, she would never go down if Tom didn’t

"Some inventors," in the last sentence just quoted, probably--indeed, we think undoubtedly--refers to Edison, whose earlier work in electric lighting (1878) had been announced in this country and abroad, and who had then stated boldly his conviction of the practicability of the subdivision of the electrical current. The above extracts are good illustrations, however, of scientific opinions up to the end of 1879, when Mr. Edison's epoch-making invention rendered them entirely untenable. The eminent scientist, John Tyndall, while not sharing these precise views, at least as late as January 17, 1879, delivered a lecture before the Royal Institution on "The Electric Light," when, after pointing out the development of the art up to Edison's work, and showing the apparent hopelessness of the problem, he said: "Knowing something of the intricacy of the practical problem, I should certainly prefer seeing it in Edison's hands to having it in mine."

The reader may have deemed this sketch of the state of the art to be a considerable digression; but it is certainly due to the subject to present the facts in such a manner as to show that this great invention was neither the result of improving some process or device that was known or existing at the time, nor due to any unforeseen lucky chance, nor the accidental result of other experiments. On the contrary, it was the legitimate outcome of a series of exhaustive experiments founded upon logical and original reasoning in a mind that had the courage and hardihood to set at naught the confirmed opinions of the world, voiced by those generally acknowledged to be the best exponents of the art--experiments carried on amid a storm of jeers and derision, almost as contemptuous as if the search were for the discovery of perpetual motion. In this we see the man foreshadowed by the boy who, when he obtained his books on chemistry or physics, did not accept any statement of fact or experiment therein, but worked out every one of them himself to ascertain whether or not they were true.

Although this brings the reader up to the year 1879, one must turn back two years and accompany Edison in his first attack on the electric-light problem. In 1877 he sold his telephone invention (the carbon transmitter) to the Western Union Telegraph Company, which had previously come into possession also of his quadruplex inventions, as already related. He was still busily engaged on the telephone, on acoustic electrical transmission, sextuplex telegraphs, duplex telegraphs, miscellaneous carbon articles, and other inventions of a minor nature. During the whole of the previous year and until late in the summer of 1877, he had been working with characteristic energy and enthusiasm on the telephone; and, in developing this invention to a successful issue, had preferred the use of carbon and had employed it in numerous forms, especially in the form of carbonized paper.

Eighteen hundred and seventy-seven in Edison's laboratory was a veritable carbon year, for it was carbon in some shape or form for interpolation in electric circuits of various kinds that occupied the thoughts of the whole force from morning to night. It is not surprising, therefore, that in September of that year, when Edison turned his thoughts actively toward electric lighting by incandescence, his early experiments should be in the line of carbon as an illuminant. His originality of method was displayed at the very outset, for one of the first experiments was the bringing to incandescence of a strip of carbon in the open air to ascertain merely how much current was required. This conductor was a strip of carbonized paper about an inch long, one-sixteenth of an inch broad, and six or seven one-thousandths of an inch thick, the ends of which were secured to clamps that formed the poles of a battery. The carbon was lighted up to incandescence, and, of course, oxidized and disintegrated immediately. Within a few days this was followed by experiments with the same kind of carbon, but in vacuo by means of a hand-worked air-pump. This time the carbon strip burned at incandescence for about eight minutes. Various expedients to prevent oxidization were tried, such, for instance, as coating the carbon with powdered glass, which in melting would protect the carbon from the atmosphere, but without successful results.

Edison was inclined to concur in the prevailing opinion as to the easy destructibility of carbon, but, without actually settling the point in his mind, he laid aside temporarily this line of experiment and entered a new field. He had made previously some trials of platinum wire as an incandescent burner for a lamp, but left it for a time in favor of carbon. He now turned to the use of almost infusible metals-- such as boron, ruthenium, chromium, etc.--as separators or tiny bridges between two carbon points, the current acting so as to bring these separators to a high degree of incandescence, at which point they would emit a brilliant light. He also placed some of these refractory metals directly in the circuit, bringing them to incandescence, and used silicon in powdered form in glass tubes placed in the electric circuit. His notes include the use of powdered silicon mixed with lime or other very infusible non-conductors or semi- conductors. Edison's conclusions on these substances were that, while in some respects they were within the bounds of possibility for the subdivision of the electric current, they did not reach the ideal that he had in mind for commercial results.